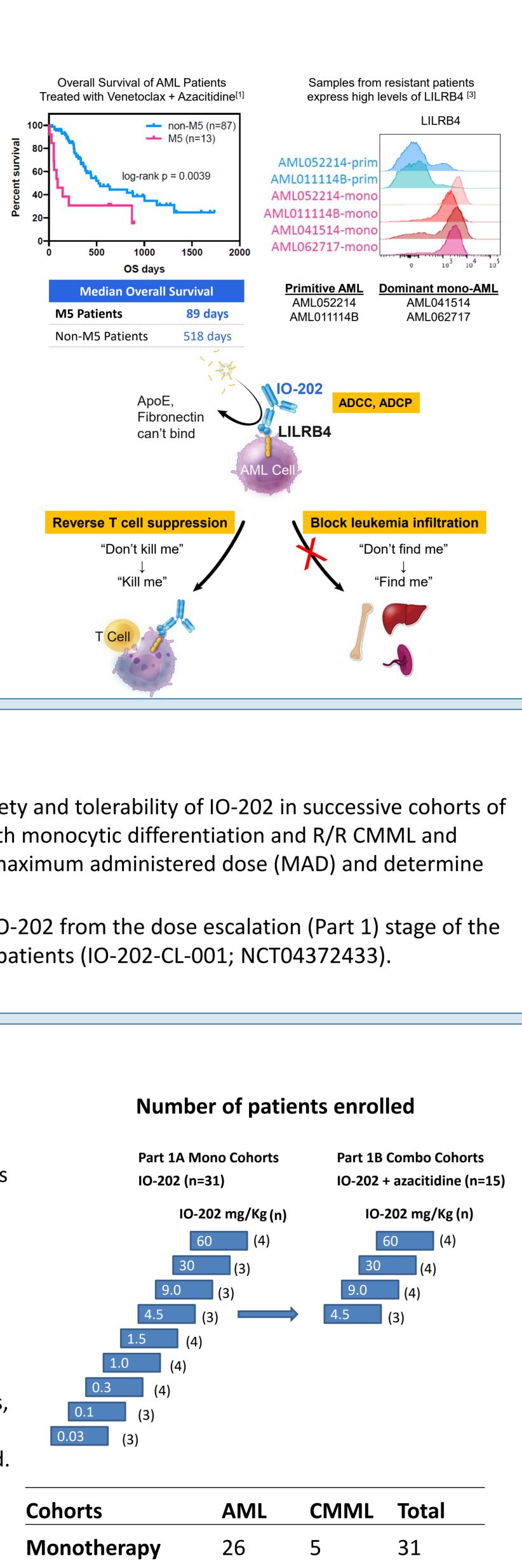


C. DiNardo¹, D. Pollyea², A. Aribi³, B. Jonas⁴, D. Jeyakumar⁵, G. Roboz⁶, H. Liu⁷, N. Dunavin⁸, W. Blum⁹, C. Zhang¹⁰, Y. Tabata¹¹, D. Valencia¹¹, T. Huang¹¹, K. Hong¹¹, H. Xiang¹¹, X.C. Liao¹¹, P. Woodard¹¹, Y.F. Madanat¹⁰ ¹MD Anderson Cancer Center | ²University of Colorado | ³City of Hope | ⁴UC Davis | ⁵UC Irvine | ⁶Cornell University of Texas Southwestern | ¹¹Immune-Onc Therapeutics, Inc.


INTRODUCTION

Monocytic AML represents approximately 10-20% of AML and is often associated with extramedullary disease, hyperleukocytosis, and venetoclax-resistance [1].

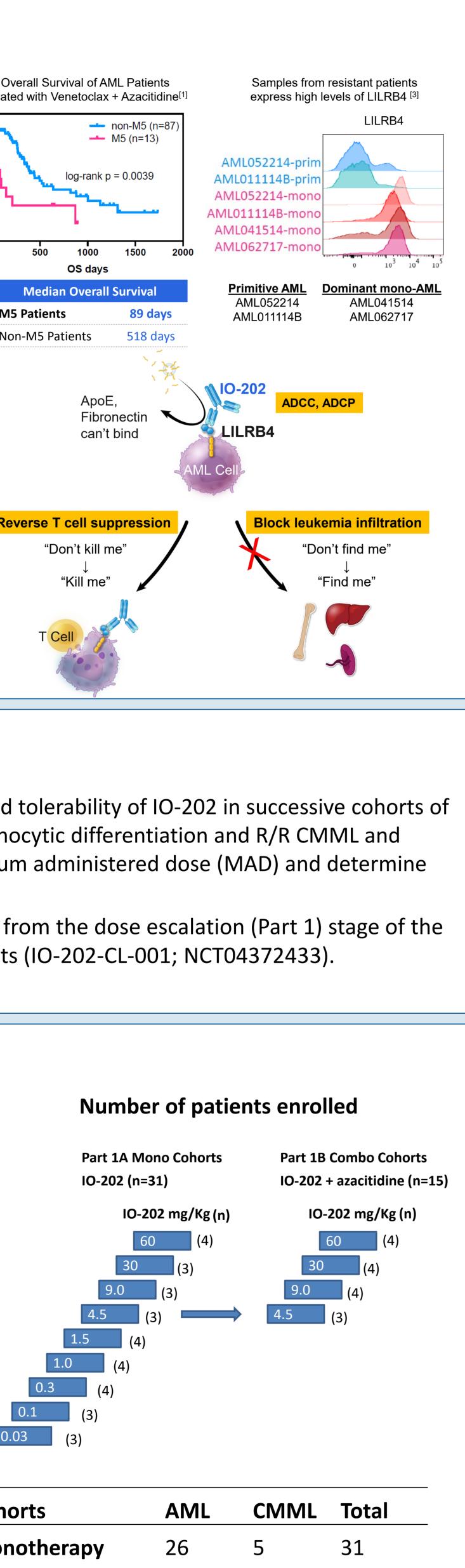
LILRB4 (also known as ILT3, CD85K, and LIR5) is an immune inhibitory receptor whose expression in patients with AML with monocytic differentiation negatively correlates with overall survival [2-3].

IO-202 is a humanized IgG1 monoclonal antibody with high affinity and specificity towards LILRB4, and blocks LILRB4 binding to its known ligands apolipoprotein E (ApoE) and fibronectin. IO-202 has three mechanisms of action (MOA) in hematologic malignancies, including ADCC or ADCP, activation of T cell cytotoxicity, and reduction of leukemia tissue infiltration in nonclinical models [4]. FDA has granted Fast Track designations for IO-202 for the treatment of relapsed or refractory (R/R) AML and CMML

OBJECTIVES

The primary objective of the study is to assess safety and tolerability of IO-202 in successive cohorts of patients with relapsed or refractory (R/R) AML with monocytic differentiation and R/R CMML and estimate the maximum tolerated dose (MTD) or maximum administered dose (MAD) and determine the recommended Phase 2 dose (RP2D).

We hereby report the clinical trial data of using IO-202 from the dose escalation (Part 1) stage of the first-in-human phase 1 study in AML and CMML patients (IO-202-CL-001; NCT04372433).


METHODS

In Part 1 of the study, patients with R/R AML with monocytic differentiation, or R/R CMML were enrolled to receive IO-202 in escalating dose levels (0.03 to 60 mg/kg) as monotherapy and in combination with azacitidine (AZA). IO-202 is administered on day 1 and day 15 of each 28-day cycle, and AZA is administered 75 mg/m² IV or SC on days 1-7 of each 28-day cycle in patients treated in the combination cohorts. The first 28day cycle is defined as the dose-limiting toxicity (DLT) period. Safety, tolerability, pharmacokinetics, immunogenicity, clinical activity and pharmacodynamic (PD) biomarkers were assessed.

Enrollment:

As of May 2023, 46 R/R patients (AML n=36, CMML n=10) were treated in Part 1 with IO-202 monotherapy (9 cohorts; n=31) or in combination with AZA (4 cohorts; n=15).

EHA2023

Cohorts	AML
Monotherapy	26
Combo + AZA	10
Total	36

15

46

10

A first-in-human phase 1 study of IO-202 (anti-LILRB4 mAb) in acute myeloid leukemia (AML) with monocytic differentiation and chronic myelomonocytic leukemia (CMML) patients

RESULTS

Efficacy:

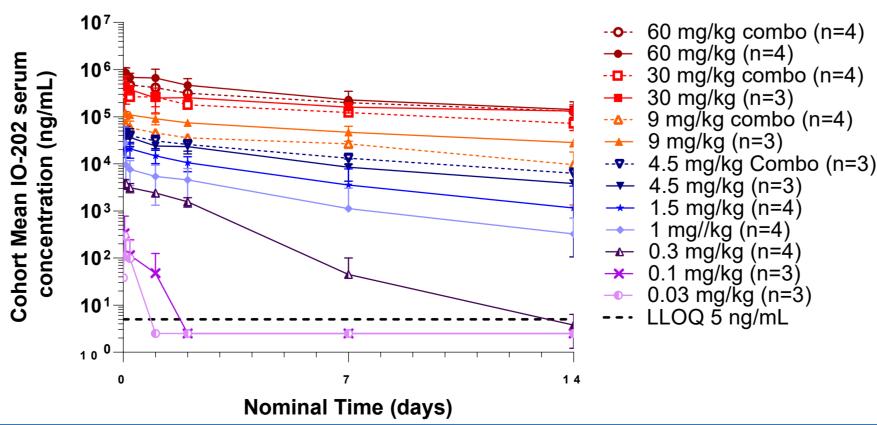
- IO-202 monotherapy: efficacy in both AML and CMML patients.
- IO-202 combination therapy: efficacy in both AML and CMML patients.

	AML (n=36)	CMML (n=10)		
IO-202 Monotherapy	Partial Remission (9 mg/kg)	Clinical Benefit >1y (0.1> 0.3 mg/kg)		
IO-202 + Azacitidine	Complete Remission >10m (30 mg/kg)	 Optimal Marrow Response >3m (60 mg/kg) Partial Remission (4.5 mg/kg) Clinical Benefit (9 mg/kg) 		

Safety:

Treatment Emergent Adverse Event (TEAE) Summary

Number of subjects with events (%)	IO-202 Monotherapy (n=31)	IO-202 + AZA (n=15)
Any grade Treatment-Emergent AE	31 (100%)	15 (100%)
Grade 3-5	28 (90.3%)	13 (86.7%)
Led to Discontinuation	5 (16.1%)	1 (6.7%)
Serious	24 (77.4%)	10 (66.7%)
Serious and Led to Discontinuation	5 (16.1%)	1 (6.7%)
Led to Death	8 (25.8%)	2 (13.3%)


Grade \geq 3 adverse events of the most common TEAE (observed in >20% of patients at any grades) were leukocytosis (n=9), febrile neutropenia (8), sinus tachycardia, epistaxis, hypokalemia and hyponatremia (1 each) in monotherapy; febrile neutropenia (4), nausea, vomiting, fatigue (2 each), and hypotension (1) in IO-202 + AZA.

No study deaths have been assessed as related to IO-202 administration. No DLTs were observed, and the maximum tolerated dose was not reached.

List of Adverse Events (# of events shown) led to Discontinuation or Death regardless of Causality

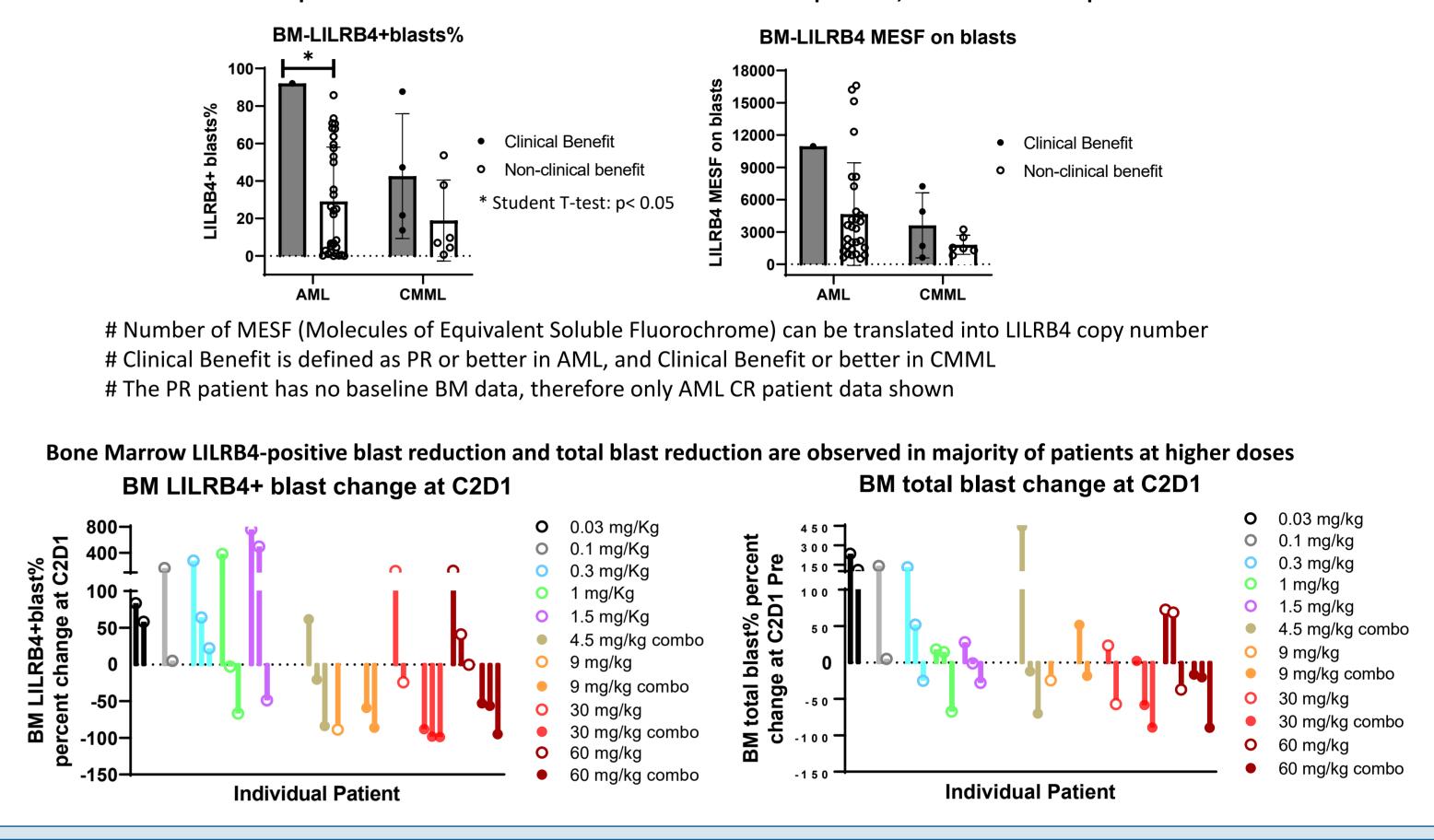
	Preferred Term	Monotherapy (n=31)		Combination (n=15)	
System Organ Class		Led to Discontinuation	Death	Led to Discontinuation	Death
Blood and lymphatic system	Leukocytosis	1	1		
Cardiac disorders	Cardiac arrest		1		
	Cardio-respiratory arrest		1		
General disorders and	Chest pain	1			
administration site	Fatigue	1			
conditions	Multiple organ dysfunction syndrome				1
Infections and infestations	Klebsiella infection		1		
	Pneumonia fungal		1		
	Pseudomonas infection		1		
Injury, poisoning and procedural complications	Contusion	1			
Neoplasms benign, malignant and unspecified	Leukemic infiltration			1	1
Psychiatric disorders	Hallucination	1			
Respiratory, thoracic and mediastinal disorders	Acute respiratory distress syndrome	1	1		
	Respiratory distress		1		
	Respiratory failure	1	2		

Pharmacokinetics (PK):

P536

• AML: 1 out of 2 AML patients with LILRB4^{high} expression achieved a complete remission for over 10 months (the other one received a low dose of 1 mg/kg), in a population with an average survival of 3 months CMML: 3 out of 5 CMML patients achieved clinical benefits including Optimal Marrow Response

9 mg/kg combo (n=4)


Preliminary observed group mean (+/-SD) IO-202 serum concentration versus time data following IV administration on Cycle 1 Day 1 (Figure on left) indicate:

- IO-202 has non-linear clearance from 0.03 mg/kg to 60 mg/kg due to target mediated drug disposition
- Dose-normalized exposure was similar in the dose range from 9 to 60 mg/kg

RESULTS (CONTINUED)

Pharmacodynamics (PD) Biomarkers:

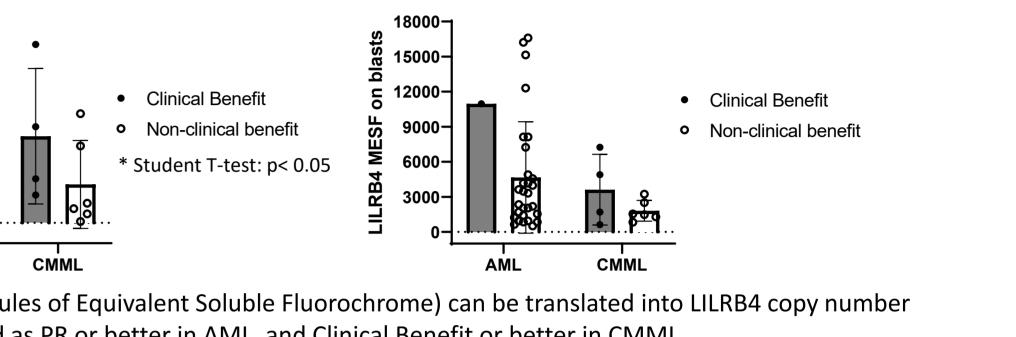
CONCLUSIONS

IO-202 Phase 1 Part 2 Expansion Cohorts:

Cohort 2A, n=10-20, 2-stage	
	\mathbf{V}
Cohort 2B, n=10-20, 2-stage	
	Δ
Cohort 2C, n=10-20, 2-stage	

ACKNOWLEDGEMENTS

involved in the study.


REFERENCES

[1] *Cancer Discov.* 2020 Apr; 10(4): 536–551. [3] Dr. Craig Jordan, personal communication

CONTACT INFORMATION

Yasuhiro Tabata, MD, PhD Immune-Onc Therapeutics, Inc.

Correlation of clinical responses with baseline LILRB4 was observed in AML patients, but not in CMML patients

• IO-202 is safe and well tolerated up to 60 mg/kg Q2W as monotherapy and in combination with AZA. • Encouraging responses, including monotherapy activity, ongoing CR in a R/R AML patient with high LILRB4 expression, and PR and Optimal Marrow Response in R/R CMML patients, were observed. • The biomarker data support the mechanisms of action, patient selection, and selection of RP2D. • The durable CR in AML and the encouraging results of Optimal Marrow Response in CMML warrant moving IO-202 to the Part 2 expansion phase with a strategy to select AML patients with high LILRB4.

- R/R LILRB4^{high} monocytic AML: IO-202 + AZA
- Newly diagnosed CMML: IO-202 + AZA
- Newly diagnosed unfit LILRB4^{high} monocytic AML: IO-202 + AZA + venetoclax

The authors would like to thank the patients, their families, all other investigators and all investigational site members

The study was funded by Immune-Onc Therapeutics, Inc., Palo Alto, CA with grants from CIRM and LLS. UT Southwestern has a financial interest in Immune-Onc Therapeutics in the form of equity and licensing.

> [2] *Nature*. 2018 Oct;562(7728):605-609. [4] *Cancer Res*. 2021; 81 (13 Supplement): 1629.

Email: yasuhiro.tabata@immuneonc.com 795 San Antonio Road, Palo Alto, CA 94303

JUNE 8 - 15 / FRANKFURT & VIRTUAL